Probability Measures on Locally Compact Groups

¡ Springer Science & Business Media
ā§Ģ.ā§Ļ
ā§§āĻŸāĻŋ āĻ°āĻŋāĻ­āĻŋāĻ‰
āĻ‡-āĻŦā§āĻ•
532
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻ°ā§‡āĻŸāĻŋāĻ‚ āĻ“ āĻ°āĻŋāĻ­āĻŋāĻ‰ āĻ¯āĻžāĻšāĻžāĻ‡ āĻ•āĻ°āĻž āĻšā§ŸāĻ¨āĻŋ  āĻ†āĻ°āĻ“ āĻœāĻžāĻ¨ā§āĻ¨

āĻāĻ‡ āĻ‡-āĻŦā§āĻ•ā§‡āĻ° āĻŦāĻŋāĻˇā§Ÿā§‡

Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems.

āĻ°ā§‡āĻŸāĻŋāĻ‚ āĻ“ āĻĒāĻ°ā§āĻ¯āĻžāĻ˛ā§‹āĻšāĻ¨āĻžāĻ—ā§āĻ˛āĻŋ

ā§Ģ.ā§Ļ
ā§§āĻŸāĻŋ āĻ°āĻŋāĻ­āĻŋāĻ‰

āĻ‡-āĻŦā§āĻ•ā§‡ āĻ°ā§‡āĻŸāĻŋāĻ‚ āĻĻāĻŋāĻ¨

āĻ†āĻĒāĻ¨āĻžāĻ° āĻŽāĻ¤āĻžāĻŽāĻ¤ āĻœāĻžāĻ¨āĻžāĻ¨āĨ¤

āĻĒāĻ āĻ¨ āĻ¤āĻĨā§āĻ¯

āĻ¸ā§āĻŽāĻžāĻ°ā§āĻŸāĻĢā§‹āĻ¨ āĻāĻŦāĻ‚ āĻŸā§āĻ¯āĻžāĻŦāĻ˛ā§‡āĻŸ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāĻ° āĻœāĻ¨ā§āĻ¯ Google Play āĻŦāĻ‡ āĻ…ā§āĻ¯āĻžāĻĒ āĻ‡āĻ¨āĻ¸ā§āĻŸāĻ˛ āĻ•āĻ°ā§āĻ¨āĨ¤ āĻāĻŸāĻŋ āĻ†āĻĒāĻ¨āĻžāĻ° āĻ…ā§āĻ¯āĻžāĻ•āĻžāĻ‰āĻ¨ā§āĻŸā§‡āĻ° āĻ¸āĻžāĻĨā§‡ āĻ…āĻŸā§‹āĻŽā§‡āĻŸāĻŋāĻ• āĻ¸āĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āĻ†āĻĒāĻ¨āĻŋ āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨ āĻ¯āĻžāĻ‡ āĻĨāĻžāĻ•ā§āĻ¨ āĻ¨āĻž āĻ•ā§‡āĻ¨ āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻĒā§œāĻ¤ā§‡ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āĻ¯āĻžāĻĒāĻŸāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°
Google Play āĻĨā§‡āĻ•ā§‡ āĻ•ā§‡āĻ¨āĻž āĻ…āĻĄāĻŋāĻ“āĻŦā§āĻ• āĻ†āĻĒāĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°ā§‡āĻ° āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžāĻ°ā§‡ āĻļā§āĻ¨āĻ¤ā§‡ āĻĒāĻžāĻ°ā§‡āĻ¨āĨ¤
eReader āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āĻ¯āĻžāĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸
Kobo eReaders-āĻāĻ° āĻŽāĻ¤ā§‹ e-ink āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻĒāĻĄāĻŧāĻ¤ā§‡, āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻāĻ•āĻŸāĻŋ āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛ā§‹āĻĄ āĻ“ āĻ†āĻĒāĻ¨āĻžāĻ° āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°āĻ¤ā§‡ āĻšāĻŦā§‡āĨ¤ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ°āĻ•āĻžāĻ°ā§€āĻ° āĻ‰āĻĻā§āĻĻā§‡āĻļā§āĻ¯ā§‡ āĻ¤ā§ˆāĻ°āĻŋ āĻ¸āĻšāĻžā§ŸāĻ¤āĻž āĻ•ā§‡āĻ¨ā§āĻĻā§āĻ°āĻ¤ā§‡ āĻĻā§‡āĻ“ā§ŸāĻž āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžāĻŦāĻ˛ā§€ āĻ…āĻ¨ā§āĻ¸āĻ°āĻŖ āĻ•āĻ°ā§‡ āĻ¯ā§‡āĻ¸āĻŦ eReader-āĻ āĻĢāĻžāĻ‡āĻ˛ āĻĒāĻĄāĻŧāĻž āĻ¯āĻžāĻŦā§‡ āĻ¸ā§‡āĻ–āĻžāĻ¨ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°ā§āĻ¨āĨ¤