Proofs and Computations

·
· Cambridge University Press
Libro electrónico
480
Páginas
Las calificaciones y opiniones no están verificadas. Más información

Acerca de este libro electrónico

Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to Π11–CA0. Ordinal analysis and the (Schwichtenberg–Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and Π11–CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.

Acerca del autor

Helmut Schwichtenberg is an Emeritus Professor of Mathematics at Ludwig-Maximilians-Universität München. He has recently developed the 'proof-assistant' MINLOG, a computer-implemented logic system for proof/program development and extraction of computational content.

Stanley S. Wainer is an Emeritus Professor of Mathematics at the University of Leeds and a past-President of the British Logic Colloquium.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.