Proper Maps of Toposes

·
· American Mathematical Society: Memoirs of the American Mathematical Society Llibre 705 · American Mathematical Soc.
Llibre electrònic
108
Pàgines
No es verifiquen les puntuacions ni les ressenyes Més informació

Sobre aquest llibre

We develop the theory of compactness of maps between toposes, together with associated notions of separatedness. This theory is built around two versions of "propriety" for topos maps, introduced here in a parallel fashion. The first, giving what we simply call "proper" maps, is a relatively weak condition due to Johnstone. The second kind of proper maps, here called "tidy", satisfy a stronger condition due to Tierney and Lindgren. Various forms of the Beck-Chevalley condition for (lax) fibered product squares of toposes play a central role in the development of the theory. Applications include a version of the Reeb stability theorem for toposes, a characterization of hyperconnected Hausdorff toposes as classifying toposes of compact groups, and of strongly Hausdorff coherent toposes as classifiying toposes of profinite groupoids. Our results also enable us to develop further particular aspects of the factorization theory of geometric morphisms studied by Johnstone. Our final application is a (so-called lax) descent theorem for tidy maps between toposes. This theorem implies the lax descent theorem for coherent toposes, conjectured by Makkai and proved earlier by Zawadowski.

Puntua aquest llibre electrònic

Dona'ns la teva opinió.

Informació de lectura

Telèfons intel·ligents i tauletes
Instal·la l'aplicació Google Play Llibres per a Android i per a iPad i iPhone. Aquesta aplicació se sincronitza automàticament amb el compte i et permet llegir llibres en línia o sense connexió a qualsevol lloc.
Ordinadors portàtils i ordinadors de taula
Pots escoltar els audiollibres que has comprat a Google Play amb el navegador web de l'ordinador.
Lectors de llibres electrònics i altres dispositius
Per llegir en dispositius de tinta electrònica, com ara lectors de llibres electrònics Kobo, hauràs de baixar un fitxer i transferir-lo al dispositiu. Segueix les instruccions detallades del Centre d'ajuda per transferir els fitxers a lectors de llibres electrònics compatibles.