It has always been a temptation for mathematicians to present the crystallized product of their thoughts as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods of more general significance. The present book deals with subjects of this category. It is written in a style which, as the author hopes, expresses adequately the balance and tension between the individuality of mathematical objects and the generality of mathematical methods. The author has been interested in Dirichlet's Principle and its various applications since his days as a student under David Hilbert. Plans for writing a book on these topics were revived when Jesse Douglas' work suggested to him a close connection between Dirichlet's Principle and basic problems concerning minimal sur faces. But war work and other duties intervened; even now, after much delay, the book appears in a much less polished and complete form than the author would have liked."