This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.
Thomas Schuster, Carl von Ossietzky Universität Oldenburg, Germany; Barbara Kaltenbacher, University of Stuttgart, Germany; Bernd Hofmann, Chemnitz University of Technology, Germany; Kamil S. Kazimierski, University of Bremen, Germany.