Representations of the Infinite Symmetric Group

·
· Cambridge Studies in Advanced Mathematics کتاب 160 · Cambridge University Press
ای-کتاب
169
صفحه‌ها
رده‌بندی‌ها و مرورها به‌تأیید نمی‌رسند.  بیشتر بدانید

درباره این ای-کتاب

Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.

درباره نویسنده

Alexei Borodin is a Professor of Mathematics at the Massachusetts Institute of Technology.

Grigori Olshanski is a Principal Researcher in the Section of Algebra and Number Theory at the Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow. He also holds the position of Dobrushin Professor at the National Research University Higher School of Economics, Moscow.

رده‌بندی این کتاب الکترونیک

نظرات خود را به ما بگویید.

اطلاعات مطالعه

تلفن هوشمند و رایانه لوحی
برنامه «کتاب‌های Google Play» را برای Android و iPad/iPhone بارگیری کنید. به‌طور خودکار با حسابتان همگام‌سازی می‌شود و به شما امکان می‌دهد هر کجا که هستید به‌صورت آنلاین یا آفلاین بخوانید.
رایانه کیفی و رایانه
با استفاده از مرورگر وب رایانه‌تان می‌توانید به کتاب‌های صوتی خریداری‌شده در Google Play گوش دهید.
eReaderها و دستگاه‌های دیگر
برای خواندن در دستگاه‌های جوهر الکترونیکی مانند کتاب‌خوان‌های الکترونیکی Kobo، باید فایل مدنظرتان را بارگیری و به دستگاه منتقل کنید. برای انتقال فایل به کتاب‌خوان‌های الکترونیکی پشتیبانی‌شده، دستورالعمل‌های کامل مرکز راهنمایی را دنبال کنید.