Riemannian Geometry: Edition 2

· Graduate Texts in Mathematics Libro 171 · Springer Science & Business Media
Libro electrónico
405
Páginas
Las calificaciones y opiniones no están verificadas. Más información

Acerca de este libro electrónico

Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research. This book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.

Important additions to this new edition include:

* A completely new coordinate free formula that is easily remembered, and is, in fact, the Koszul formula in disguise;

* An increased number of coordinate calculations of connection and curvature;

* General fomulas for curvature on Lie Groups and submersions;

* Variational calculus has been integrated into the text, which allows for an early treatment of the Sphere theorem using a forgottten proof by Berger;

* Several recent results about manifolds with positive curvature.

From reviews of the first edition:

"The book can be highly recommended to all mathematicians who want to get a more profound idea about the most interesting

achievements in Riemannian geometry. It is one of the few comprehensive sources of this type."

- Bernd Wegner, Zentralblatt

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.