Riemannian Manifolds: An Introduction to Curvature

· Graduate Texts in Mathematics Kitabu cha 176 · Springer Science & Business Media
Kitabu pepe
226
Kurasa
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

Thisbookisdesignedasatextbookforaone-quarterorone-semestergr- uate course on Riemannian geometry, for students who are familiar with topological and di?erentiable manifolds. It focuses on developing an in- mate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds. I have selected a set of topics that can reasonably be covered in ten to ?fteen weeks, instead of making any attempt to provide an encyclopedic treatment of the subject. The book begins with a careful treatment of the machineryofmetrics,connections,andgeodesics,withoutwhichonecannot claim to be doing Riemannian geometry. It then introduces the Riemann curvature tensor, and quickly moves on to submanifold theory in order to give the curvature tensor a concrete quantitative interpretation. From then on, all e?orts are bent toward proving the four most fundamental theorems relating curvature and topology: the Gauss–Bonnet theorem (expressing thetotalcurvatureofasurfaceintermsofitstopologicaltype),theCartan– Hadamard theorem (restricting the topology of manifolds of nonpositive curvature), Bonnet’s theorem (giving analogous restrictions on manifolds of strictly positive curvature), and a special case of the Cartan–Ambrose– Hicks theorem (characterizing manifolds of constant curvature). Many other results and techniques might reasonably claim a place in an introductory Riemannian geometry course, but could not be included due to time constraints.

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.