Rigid Body Dynamics

·
· De Gruyter Studies in Mathematical Physics Book 52 · Walter de Gruyter GmbH & Co KG
eBook
533
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

This book provides an up-to-date overview of results in rigid body dynamics, including material concerned with the analysis of nonintegrability and chaotic behavior in various related problems. The wealth of topics covered makes it a practical reference for researchers and graduate students in mathematics, physics and mechanics.

Contents
Rigid Body Equations of Motion and Their Integration
The Euler – Poisson Equations and Their Generalizations
The Kirchhoff Equations and Related Problems of Rigid Body Dynamics
Linear Integrals and Reduction
Generalizations of Integrability Cases. Explicit Integration
Periodic Solutions, Nonintegrability, and Transition to Chaos
Appendix A : Derivation of the Kirchhoff, Poincaré – Zhukovskii, and Four-Dimensional Top Equations
Appendix B: The Lie Algebra e(4) and Its Orbits
Appendix C: Quaternion Equations and L-A Pair for the Generalized Goryachev – Chaplygin Top
Appendix D: The Hess Case and Quantization of the Rotation Number
Appendix E: Ferromagnetic Dynamics in a Magnetic Field
Appendix F: The Landau – Lifshitz Equation, Discrete Systems, and the Neumann Problem
Appendix G: Dynamics of Tops and Material Points on Spheres and Ellipsoids
Appendix H: On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation
Appendix I: The Hamiltonian Dynamics of Self-gravitating Fluid and Gas Ellipsoids

About the author

Alexey V. Borisov and Ivan S. Mamaev, Udmurt State University, Russia.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.