Nolan Wallach's mathematical research is remarkable in both its breadth and depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. The touchstone and unifying thread running through all his work is the idea of symmetry. This volume is a collection of invited articles that pay tribute to Wallach's ideas, and show symmetry at work in a large variety of areas. The articles, predominantly expository, are written by distinguished mathematicians and contain sufficient preliminary material to reach the widest possible audiences. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere. Contributors: D. Barbasch, K. Baur, O. Bucicovschi, B. Casselman, D. Ciubotaru, M. Colarusso, P. Delorme, T. Enright, W.T. Gan, A Garsia, G. Gour, B. Gross, J. Haglund, G. Han, P. Harris, J. Hong, R. Howe, M. Hunziker, B. Kostant, H. Kraft, D. Meyer, R. Miatello, L. Ni, G. Schwarz, L. Small, D. Vogan, N. Wallach, J. Wolf, G. Xin, O. Yacobi.