Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics

· Springer Science & Business Media
Ebook
355
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book is designed as a unified and mathematically rigorous treatment of some recent developments of the asymptotic distribution theory of order statistics (including the extreme order statistics) that are relevant for statistical theory and its applications. Particular emphasis is placed on results concern ing the accuracy oflimit theorems, on higher order approximations, and other approximations in quite a general sense. Contrary to the classical limit theorems that primarily concern the weak convergence of distribution functions, our main results will be formulated in terms of the variational and the Hellinger distance. These results will form the proper springboard for the investigation of parametric approximations of nonparametric models of joint distributions of order statistics. The approxi mating models include normal as well as extreme value models. Several applications will show the usefulness of this approach. Other recent developments in statistics like nonparametric curve estima tion and the bootstrap method will be studied as far as order statistics are concerned. 1n connection with this, graphical methods will, to some extent, be explored.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.