Scientific Computation on Mathematical Problems and Conjectures

· CBMS-NSF Regional Conference Series in Applied Mathematics Cartea 60 · SIAM
Carte electronică
128
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Studies the use of scientific computation as a tool in attacking a number of mathematical problems and conjectures. In this case, scientific computation refers primarily to computations that are carried out with a large number of significant digits, for calculations associated with a variety of numerical techniques such as the (second) Remez algorithm in polynomial and rational approximation theory, Richardson extrapolation of sequences of numbers, the accurate finding of zeros of polynomials of large degree, and the numerical approximation of integrals by quadrature techniques. The goal of this book is not to delve into the specialized field dealing with the creation of robust and reliable software needed to implement these high-precision calculations, but rather to emphasize the enormous power that existing software brings to the mathematician's arsenal of weapons for attacking mathematical problems and conjectures. Scientific Computation on Mathematical Problems and Conjectures includes studies of the Bernstein Conjecture of 1913 in polynomial approximation theory, the "1/9" Conjecture of 1977 in rational approximation theory, the famous Riemann Hypothesis of 1859, and the Polya Conjecture of 1927. The emphasis of this monograph rests strongly on the interplay between hard analysis and high-precision calculations.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.