Seifert Fiberings

·
· Mathematical Surveys and Monographs Buku 166 · American Mathematical Soc.
eBook
396
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Seifert fiberings extend the notion of fiber bundle mappings by allowing some of the fibers to be singular. Away from the singular fibers, the fibering is an ordinary bundle with fiber a fixed homogeneous space. The singular fibers are quotients of this homogeneous space by distinguished groups of homeomorphisms. These fiberings are ubiquitous and important in mathematics. This book describes in a unified way their structure, how they arise, and how they are classified and used in applications. Manifolds possessing such fiber structures are discussed and range from the classical three-dimensional Seifert manifolds to higher dimensional analogues encompassing, for example, flat manifolds, infra-nil-manifolds, space forms, and their moduli spaces. The necessary tools not covered in basic graduate courses are treated in considerable detail. These include transformation groups, cohomology of groups, and needed Lie theory. Inclusion of the Bieberbach theorems, existence, uniqueness, and rigidity of Seifert fiberings, aspherical manifolds, symmetric spaces, toral rank of spherical space forms, equivariant cohomology, polynomial structures on solv-manifolds, fixed point theory, and other examples, exercises and applications attest to the breadth of these fiberings. This is the first time the scattered literature on singular fiberings is brought together in a unified approach. The new methods and tools employed should be valuable to researchers and students interested in geometry and topology.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.