Select a Sample: Little Quick Fix

¡ Little Quick Fix āĻ•āĻŋāĻ¤āĻžāĻĒ 20 ¡ SAGE
āĻ‡āĻŦā§āĻ•
128
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻ¯ā§‹āĻ—ā§āĻ¯
āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ†ā§°ā§ āĻĒā§°ā§āĻ¯āĻžāĻ˛ā§‹āĻšāĻ¨āĻž āĻ¸āĻ¤ā§āĻ¯āĻžāĻĒāĻ¨ āĻ•ā§°āĻž āĻšā§‹ā§ąāĻž āĻ¨āĻžāĻ‡  āĻ…āĻ§āĻŋāĻ• āĻœāĻžāĻ¨āĻ•

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨ā§° āĻŦāĻŋāĻˇā§Ÿā§‡

Whether you are working with existing data or generating your own, sampling is a deceptively complicated and anxiety-inducing process especially when participants are people. Pressured by the usual limitations on time, access, and resources, you can panic at the thought that sampling involves theory and calculations and make snap decisions that usually lead to convenience sampling and ultimately, weak research claims. This Fix takes the panic out of sampling designs and helps you understand what sampling is, how it applies to different types of situations, and how to decide what approach works best for your project so you can maximize the impact of your research. It covers questions like:

¡ What is sampling?

¡ What is my population?

¡ Should I use probability sampling?

¡ Should I use subjective, non-probability sampling?

¡ How do I sample from ill-defined, hard-to-reach, and wary populations?

¡ How can I sample people ethically?

¡ How can I reduce error and bias in sampling?

¡ How large should my sample be?

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨āĻ• āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ•ā§°āĻ•

āĻ†āĻŽāĻžāĻ• āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻŽāĻ¤āĻžāĻŽāĻ¤ āĻœāĻ¨āĻžāĻ“āĻ•āĨ¤

āĻĒāĻĸāĻŧāĻžā§° āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€

āĻ¸ā§āĻŽāĻžā§°ā§āĻŸāĻĢ’āĻ¨ āĻ†ā§°ā§ āĻŸā§‡āĻŦāĻ˛ā§‡āĻŸ
Android āĻ†ā§°ā§ iPad/iPhoneā§° āĻŦāĻžāĻŦā§‡ Google Play Books āĻāĻĒāĻŸā§‹ āĻ‡āĻ¨āĻˇā§āĻŸāĻ˛ āĻ•ā§°āĻ•āĨ¤ āĻ‡ āĻ¸ā§āĻŦāĻ¯āĻŧāĻ‚āĻ•ā§āĻ°āĻŋāĻ¯āĻŧāĻ­āĻžā§ąā§‡ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻāĻ•āĻžāĻ‰āĻŖā§āĻŸā§° āĻ¸ā§ˆāĻ¤ā§‡ āĻ›āĻŋāĻ‚āĻ• āĻšāĻ¯āĻŧ āĻ†ā§°ā§ āĻ†āĻĒā§āĻ¨āĻŋ āĻ¯'āĻ¤ā§‡ āĻ¨āĻžāĻĨāĻžāĻ•āĻ• āĻ¤'āĻ¤ā§‡āĻ‡ āĻ•ā§‹āĻ¨ā§‹ āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ• āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨āĻ¤ āĻļā§āĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸ā§āĻŦāĻŋāĻ§āĻž āĻĻāĻŋāĻ¯āĻŧā§‡āĨ¤
āĻ˛ā§‡āĻĒāĻŸāĻĒ āĻ†ā§°ā§ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°
āĻ†āĻĒā§āĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻ•ā§°āĻŋ Google PlayāĻ¤ āĻ•āĻŋāĻ¨āĻž āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ•āĻ¸āĻŽā§‚āĻš āĻļā§āĻ¨āĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āĻ‡-ā§°ā§€āĻĄāĻžā§° āĻ†ā§°ā§ āĻ…āĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻš
Kobo eReadersā§° āĻĻā§°ā§‡ āĻ‡-āĻšāĻŋā§ŸāĻžāĻāĻšā§€ā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ¸āĻŽā§‚āĻšāĻ¤ āĻĒā§āĻŋāĻŦāĻ˛ā§ˆ, āĻ†āĻĒā§āĻ¨āĻŋ āĻāĻŸāĻž āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛â€™āĻĄ āĻ•ā§°āĻŋ āĻ¸ā§‡āĻ‡āĻŸā§‹ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ˛ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§°āĻŖ āĻ•ā§°āĻŋāĻŦ āĻ˛āĻžāĻ—āĻŋāĻŦāĨ¤ āĻ¸āĻŽā§°ā§āĻĨāĻŋāĻ¤ āĻ‡-ā§°āĻŋāĻĄāĻžā§°āĻ˛ā§ˆ āĻĢāĻžāĻ‡āĻ˛āĻŸā§‹ āĻ•ā§‡āĻ¨ā§‡āĻ•ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§° āĻ•ā§°āĻŋāĻŦ āĻœāĻžāĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸āĻšāĻžāĻ¯āĻŧ āĻ•ā§‡āĻ¨ā§āĻĻā§ā§°āĻ¤ āĻĨāĻ•āĻž āĻ¸āĻŦāĻŋāĻļā§‡āĻˇ āĻ¨āĻŋā§°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€ āĻšāĻžāĻ“āĻ•āĨ¤