Semisimpliziale algebraische Topologie

· Springer-Verlag
Kitabu pepe
288
Kurasa
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

In diesem Buch werden einige Gebiete der algebraischen Topologie, die man heute größtenteils zum klassischen Bestand rechnet, mit semi simplizialen Methoden in einheitlicher Weise dargestellt. Der Begriff der semisimplizialen Menge ist dabei von grundlegender Bedeutung. Er wurde um 1950 von EILENBERG und ZILBER bei der Untersuchung der singulären Homologietheorie geprägt. Seine Nützlichkeit für die alge braische Topologie, und zwar nicht nur für die Homologietheorie, erwies sich bald darauf durch die Arbeiten von DOLD, KAN, MACLANE, MOORE und POSTNIKOV. Durch sie wurde das vorliegende Buch angeregt. Die semisimpliziale Menge steht zwischen der Topologie und der Algebra. Einerseits ist ihre Struktur so "algebraisch", daß man direkt Homologie-und Homotopiegruppen für sie definieren und allgemeine Zusammenhänge zwischen ihnen beweisen kann. Andererseits haben viele topologische Begriffe, wie z. B. die Faserung oder die Homotopie ein semisimpliziales Gegenstück. Der Zusammenhang zwischen der Topologie und der semisimplizialen Theorie beschränkt sich nicht auf diese Analogie: Es gibt einen Funktor S von der Kategorie der topo logischen Räume in die Kategorie der semisimplizialen Mengen, der die topologischen Begriffe in die entsprechenden semisimplizialen über führt. "Semisimpliziale algebraische Topologie" bedeutet am Beispiel der singulären Homologietheorie : Man ordnet dem Raum X seine semi simpliziale Menge SX zu, definiert die Homologie von SX als singuläre Homologie des Raumes X und folgert die Eigenschaften der singulären Homologietheorie aus denen der Homologie semisimplizialer Mengen. In dieser Weise werden die Homotopietheorie, die Homologie-und Kohomologietheorie semisimplizial entwickelt.

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.