Separation Axioms on Bipolar Hypersoft Topological Spaces

·
· HyperSoft Set Libro 36 · Infinite Study
eBook
16
Páginas
Apto
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

According to its definition, a topological space could be a highly unexpected object. There are spaces (indiscrete space) which have only two open sets: the empty set and the entire space. In a discrete space, on the other hand, each set is open. These two artificial extremes are very rarely seen in actual practice. Most spaces in geometry and analysis fall somewhere between these two types of spaces. Accordingly, the separation axioms allow us to say with confidence whether a topological space contains a sufficient number of open sets to meet our needs. To this end, we use bipolar hypersoft (BHS) sets (one of the efficient tools to deal with ambiguity and vagueness) to define a new kind of separation axioms called BHS e Ti-space (i = 0, 1, 2, 3, 4). 

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.