Separation Axioms on Bipolar Hypersoft Topological Spaces

·
· HyperSoft Set Kitabu cha 36 · Infinite Study
Kitabu pepe
16
Kurasa
Kimetimiza masharti
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

According to its definition, a topological space could be a highly unexpected object. There are spaces (indiscrete space) which have only two open sets: the empty set and the entire space. In a discrete space, on the other hand, each set is open. These two artificial extremes are very rarely seen in actual practice. Most spaces in geometry and analysis fall somewhere between these two types of spaces. Accordingly, the separation axioms allow us to say with confidence whether a topological space contains a sufficient number of open sets to meet our needs. To this end, we use bipolar hypersoft (BHS) sets (one of the efficient tools to deal with ambiguity and vagueness) to define a new kind of separation axioms called BHS e Ti-space (i = 0, 1, 2, 3, 4). 

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.