The aim of this book is to illustrate by significant special examples three aspects of the theory of Diophantine approximations: the formal relationships that exist between counting processes and the functions entering the theory; the determination of these functions for numbers given as classical numbers; and certain asymptotic estimates holding almost everywhere.
Each chapter works out a special case of a much broader general theory, as yet unknown. Indications for this are given throughout the book, together with reference to current publications. The book may be used in a course in number theory, whose students will thus be put in contact with interesting but accessible problems on the ground floor of mathematics.