Differential Equations

· ·
· Academic Press
Ebook
288
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Differential Equations is a collection of papers from the "Eight Fall Conference on Differential Equations" held at Oklahoma State University in October 1979. The papers discuss hyperbolic problems, bifurcation function, boundary value problems for Lipschitz equations, and the periodic solutions of systems of ordinary differential equations. Some papers deal with the existence of periodic solutions for nonlinearly perturbed conservative systems, the saddle-point theorem, the periodic solutions of the forced pendulum equation, as well as the structural identification (inverse) problem for illness-death processes. One paper presents an elementary proof of the work of deOliveira and Hale, and applies the stability for autonomous systems in the critical case of one zero root. Another paper explains the necessary and sufficient conditions for structural identification prior to application in states of illness-death processes. An illness-death process is a continuous Markov model with n illness (transient) states each having one (and only one) transfer into a death state. The paper examines two theorems whether these apply to an illness-death process under certain given elements. The collection is an ideal source of reference for mathematicians, students, and professor of calculus and advanced mathematics.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.