Curvature in Mathematics and Physics

· Courier Corporation
Ebook
416
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This original text for courses in differential geometry is geared toward advanced undergraduate and graduate majors in math and physics. Based on an advanced class taught by a world-renowned mathematician for more than fifty years, the treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool.
Starting with an introduction to the various curvatures associated to a hypersurface embedded in Euclidean space, the text advances to a brief review of the differential and integral calculus on manifolds. A discussion of the fundamental notions of linear connections and their curvatures follows, along with considerations of Levi-Civita's theorem, bi-invariant metrics on a Lie group, Cartan calculations, Gauss's lemma, and variational formulas. Additional topics include the Hopf-Rinow, Myer's, and Frobenius theorems; special and general relativity; connections on principal and associated bundles; the star operator; superconnections; semi-Riemannian submersions; and Petrov types. Prerequisites include linear algebra and advanced calculus, preferably in the language of differential forms.

About the author

Shlomo Zvi Sternberg is a leading mathematician noted for his work in geometry. A longtime mathematics professor at Harvard University, he has written several textbooks for undergraduate students as well as a number of monographs used at Harvard and other educational institutions.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.