Single-Molecule Enzymology: Nanomechanical Manipulation and Hybrid Methods

·
· Methods in Enzymology Cartea 582 · Academic Press
Carte electronică
484
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Single-Molecule Enzymology, Part B, the latest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in single-molecule enzymology, and includes sections on such topics as force-based and hybrid approaches, fluorescence, high-throughput sm enzymology, and nanopore and tethered particle motion. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods in single-molecule enzymology - Contains sections on such topics as force-based and hybrid approaches, fluorescence, high-throughput sm enzymology, and nanopore and tethered particle motion

Despre autor

Graduate of Peter the Great St. Petersburg Polytechnic University, Russia (1996 MS diploma with honors (equivalent of cum laude) in physics/biophysics) and Osaka University, Japan (2000 PhD in biological sciences), Dr. Maria Spies is an Associate Professor of Biochemistry at the University of Iowa Carver College of Medicine. Spies’ research career has been focused on deciphering the intricate choreography of the molecular machines orchestrating the central steps in the homology directed DNA repair. Her doctoral research supported by the Japanese Government (MONBUSHO) Graduate Scholarship provided the first detailed biochemical characterization of archaeal recombinase RadA. In her postdoctoral work with Dr. Steve Kowalczykowski (UC Davis) supported by the American Cancer Society, Spies reconstituted at the single-molecule level the initial steps of bacterial recombination and helped to explain how this process is regulated.Spies’ laboratory at the University of Iowa emphasizes the molecular machinery of homologous recombination, how it is integrated into DNA replication, repair and recombination (the 3Rs of genome stability), and how it is misappropriated in the molecular pathways that process stalled DNA replication events and DNA breaks through highly mutagenic, genome destabilizing mechanisms. Her goal is to understand, reconstitute and manipulate an elaborate network of DNA recombination, replication and repair, and to harness this understanding for anticancer drug discovery. The Spies lab utilizes a broad spectrum of techniques from biochemical reconstitutions of the key biochemical reactions in DNA recombination, repair and replication, to structural and single-molecule analyses of the proteins and enzymes coordinating these reactions, to combined HTS/CADD campaigns targeting human DNA repair proteins. Work in Spies Lab has been funded by the American Cancer Society (ACS), Howard Hughes Medical Institute (HHMI), and is currently supported by the National Institutes of Health (NIH). She received several prestigious awards including HHMI Early Career Scientist Award and Margaret Oakley Dayhoff Award in Biophysics. She serves on the editorial board of the Journal of Biological Chemistry, and as an academic editor of the journal Plos-ONE. She is a permanent member and a chair of the American Cancer Society “DNA mechanisms in cancer review panel.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.