Singular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds $U(p,q;{\mathbb F})/U(p-m,q;{\mathbb F})$

· American Mathematical Soc.
E-grāmata
106
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

Interesting classes of (g, K)-modules are often described naturally in terms of cohomologically induced representations in various settings, such as unitary highest weight modules, the theory of dual reductive pairs, discrete series for semisimple theory of dual reductive pairs, discrete series for semisimple symmetric spaces, etc. These have been stimulating the study of algebraic properties of derived functor modules. Now an almost satisfactory theory on derived functor modules, including a functorial property about unitarizability, has been developed in the good range of parameters, though some subtle problems still remain. This work treats a relatively singular part of the unitary dual of pseudo-orthogonal groups U(p, q;F) over F = R, C and H. These representations arise from discrete series for indefinite Stiefel manifolds U(p, q;F)/U(p - m, q, F)(2m 4p). Thanks to the duality theorem between d-module construction and Zuckerman's derived functor modules (ZDF-modules), these discrete series are naturally described in terms of ZF-modules with possibly singular parameters. The author's approach is algebraic and covers some parameters wandering outside the canonical Weyl cha

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.