Solving Linear Partial Differential Equations: Spectra

· World Scientific
Carte electronică
408
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

'This booklet provides a very lucid and versatile introduction to the methods of linear partial differential equations. It covers a wealth of very important material in a concise, nevertheless very instructive manner, and as such it may serve as an excellent guide to further, more advanced and detailed reading in this area of both classical and contemporary mathematics.'zbMATHPartial differential equations arise in many branches of science and they vary in many ways. No one method can be used to solve all of them, and only a small percentage have been solved. This book examines the general linear partial differential equation of arbitrary order m. Even this involves more methods than are known. We ask a simple question: when can an equation be solved and how many solutions does it have?The answer is surprising even for equations with constant coefficients. We begin with these equations, first finding conditions which allow one to solve and obtain a finite number of solutions. It is then shown how to obtain those solutions by analyzing the structure of the equation very carefully. A substantial part of the book is devoted to this. Then we tackle the more difficult problem of considering equations with variable coefficients. A large number of such equations are solved by comparing them to equations with constant coefficients.In numerous applications in the sciences, students and researchers are required to solve such equations in order to get the answers that they need. In many cases, the basic scientific theory requires the resulting partial differential equation to have a solution, and one is required to know how many solutions exist. This book deals with such situations.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.