Spatial Predictive Modeling with R

· CRC Press
eBook
404
Páginas
Apto
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Spatial predictive modeling (SPM) is an emerging discipline in applied sciences, playing a key role in the generation of spatial predictions in various disciplines. SPM refers to preparing relevant data, developing optimal predictive models based on point data, and then generating spatial predictions. This book aims to systematically introduce the entire process of SPM as a discipline. The process contains data acquisition, spatial predictive methods and variable selection, parameter optimization, accuracy assessment, and the generation and visualization of spatial predictions, where spatial predictive methods are from geostatistics, modern statistics, and machine learning.

The key features of this book are:

•Systematically introducing major components of SPM process.
•Novel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods.
•Novel predictive accuracy-based variable selection techniques for spatial predictive methods.
•Predictive accuracy-based parameter/model optimization.
•Reproducible examples for SPM of various data types in R.

This book provides guidelines, recommendations, and reproducible examples for developing optimal predictive models by considering various components and associated factors for quality-improved spatial predictions. It provides valuable tools for researchers, modelers, and university students not only in SPM field but also in other predictive modeling fields.

Dr Li has produced over 100 various publications in spatial predictive modelling, statistical computing, ecological and environmental modelling, and ecology, developed a number of hybrid methods for SPM, and published four R packages for variable selections as well as SPM.

Acerca del autor

Dr Jin Li works at Data2action, Australia as a Founder. He has research experience in spatial predictive modelling, statistical computing, ecological and environmental modelling, and ecology. As a scientist, he worked in the Chinese Academy of Sciences, University of New England, CSIRO, and Geoscience Australia. He was an Associate Editor (Jul 2008-Dec 2015) and an editorial board member (Jan 2016-April 2020) of Acta Oecologica, and a Guest Academic Editor (Mar 2018) and an Academic Editor (May 2018-Apr 2020) of PLOS ONE. He has produced over 100 various publications, developed a number of hybrid methods for spatial predictive modeling, and published four R packages for variable selections and spatial predictive modelling.
For further information see https://www.researchgate.net/profile/Jin-Li-74, https://scholar.google.com/citations?user=Jeot53EAAAAJ&hl=en and https://www.linkedin.com/in/jin-li-01421a68/.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.