Spatial Predictive Modeling with R

· CRC Press
E-grāmata
404
Lappuses
Piemērota
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

Spatial predictive modeling (SPM) is an emerging discipline in applied sciences, playing a key role in the generation of spatial predictions in various disciplines. SPM refers to preparing relevant data, developing optimal predictive models based on point data, and then generating spatial predictions. This book aims to systematically introduce the entire process of SPM as a discipline. The process contains data acquisition, spatial predictive methods and variable selection, parameter optimization, accuracy assessment, and the generation and visualization of spatial predictions, where spatial predictive methods are from geostatistics, modern statistics, and machine learning.

The key features of this book are:

•Systematically introducing major components of SPM process.
•Novel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods.
•Novel predictive accuracy-based variable selection techniques for spatial predictive methods.
•Predictive accuracy-based parameter/model optimization.
•Reproducible examples for SPM of various data types in R.

This book provides guidelines, recommendations, and reproducible examples for developing optimal predictive models by considering various components and associated factors for quality-improved spatial predictions. It provides valuable tools for researchers, modelers, and university students not only in SPM field but also in other predictive modeling fields.

Dr Li has produced over 100 various publications in spatial predictive modelling, statistical computing, ecological and environmental modelling, and ecology, developed a number of hybrid methods for SPM, and published four R packages for variable selections as well as SPM.

Par autoru

Dr Jin Li works at Data2action, Australia as a Founder. He has research experience in spatial predictive modelling, statistical computing, ecological and environmental modelling, and ecology. As a scientist, he worked in the Chinese Academy of Sciences, University of New England, CSIRO, and Geoscience Australia. He was an Associate Editor (Jul 2008-Dec 2015) and an editorial board member (Jan 2016-April 2020) of Acta Oecologica, and a Guest Academic Editor (Mar 2018) and an Academic Editor (May 2018-Apr 2020) of PLOS ONE. He has produced over 100 various publications, developed a number of hybrid methods for spatial predictive modeling, and published four R packages for variable selections and spatial predictive modelling.
For further information see https://www.researchgate.net/profile/Jin-Li-74, https://scholar.google.com/citations?user=Jeot53EAAAAJ&hl=en and https://www.linkedin.com/in/jin-li-01421a68/.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.