Statistical Inference via Convex Optimization

·
· Princeton University Press
ای-کتاب
656
صفحه‌ها
واجد شرایط
رده‌بندی‌ها و مرورها به‌تأیید نمی‌رسند.  بیشتر بدانید

درباره این ای-کتاب

This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.

Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.

Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.

درباره نویسنده

Anatoli Juditsky is professor of applied mathematics and chair of statistics and optimization at the Multidisciplinary Institute in Artificial Intelligence at the Université Grenoble Alpes in France. Arkadi Nemirovski is the John Hunter Chair and professor of industrial and systems engineering at the Georgia Institute of Technology. His books include Robust Optimization (Princeton).

رده‌بندی این کتاب الکترونیک

نظرات خود را به ما بگویید.

اطلاعات مطالعه

تلفن هوشمند و رایانه لوحی
برنامه «کتاب‌های Google Play» را برای Android و iPad/iPhone بارگیری کنید. به‌طور خودکار با حسابتان همگام‌سازی می‌شود و به شما امکان می‌دهد هر کجا که هستید به‌صورت آنلاین یا آفلاین بخوانید.
رایانه کیفی و رایانه
با استفاده از مرورگر وب رایانه‌تان می‌توانید به کتاب‌های صوتی خریداری‌شده در Google Play گوش دهید.
eReaderها و دستگاه‌های دیگر
برای خواندن در دستگاه‌های جوهر الکترونیکی مانند کتاب‌خوان‌های الکترونیکی Kobo، باید فایل مدنظرتان را بارگیری و به دستگاه منتقل کنید. برای انتقال فایل به کتاب‌خوان‌های الکترونیکی پشتیبانی‌شده، دستورالعمل‌های کامل مرکز راهنمایی را دنبال کنید.