Statistical Regression Modeling with R: Longitudinal and Multi-level Modeling

·
· Springer Nature
E-boek
228
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.

Over de auteur

Dr. Ding-Geng Chen is a fellow of the American Statistical Association and currently the Wallace H. Kuralt Distinguished Professor at the University of North Carolina at Chapel Hill. He was a professor in biostatistics at the University of Rochester and the Karl E. Peace Endowed Eminent Scholar Chair in biostatistics at Georgia Southern University. He is also a senior statistics consultant for biopharmaceutical organizations and government agencies with extensive expertise in Monte Carlo simulations, clinical trial biostatistics, and public health statistics. Dr. Chen has more than 200 professional publications, and he has coauthored/coedited 31 books on clinical trial methodology, meta-analysis, data sciences, Monte Carlo simulation-based statistical modeling, and public health applications. He has been invited nationally and internationally to give speeches on his research.

Ms. Jenny K. Chen graduated with a master's degree from the Department of Statistics and Data Science at Cornell University. She is currently working as a financial analyst at Morgan Stanley (Midtown New York Office) for their Wealth Management division. Previously, Jenny worked as a product manager for Google, where she led a team of data scientists to develop several prediction algorithms for the 2019 NCAA March Madness Basketball Tournament. She has published several research papers in statistical modeling and data analytics.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.