This book reveals that the RNA molecule is not just an information-carrying molecule with some secondary structures. Accordingly, how RNA is modified, regulated, packaged, and controlled is an important aspect. Leading experts address questions such as where the over 170 distinct posttranscriptional RNA modifications are located on the genome, what percentage of mRNAs and noncoding RNAs these modifications include, and how an RNA modification impacts a person’s biology. In closing, the book reviews the role of RNA modifications and RBPs in a variety of diseases and their pathogenesis.
Addressing some of the most exciting challenges in epitranscriptomics, this book provides a valuable and engaging resource for researchers in academia and industry studying the phenomena of RNA modification.
Professor Jurga has served as Vice-Rector and Rector of the Adam Mickiewicz University Poznań (AMU), and also created the interdisciplinary NanoBioMedical Center at the AMU, which he has been the director of since 2010. From 2005 to 2007 he was appointed as the Under Secretary and Secretary of State for research and higher education at the Ministry of Education and Science and the Ministry of Science and Higher Education.
Jan Barciszewski is a Professor at Adam Mickiewicz University (AMU) in Poznań, Poland and at the Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznań, Poland where he has worked since 1974. He studied organic chemistry at the AMU. During his PhD studies he worked on the structure and function of modified bases and nucleoside sequences of plant phenylalanine specific transfer ribonucleic acid (tRNA), including cytokinins. He was subsequently granted a Doctor of Science degree for his work on the properties of plant tRNAs and aminoacyl-tRNA synthetases. In the 1990s he began working on the diagnosis and therapy of brain tumors. He developed a new method for the transformation of plant mitochondria based on catalytic RNAs, and is currently involved in studies on a new type of catalytic RNAs (enantiomeric ribozymes) for efficient RNA target cleavage in vivo, as well as the search for new anti-aging agents.