Stieltjes Differential Calculus With Applications

·
· Trends In Abstract And Applied Analysis Cartea 12 · World Scientific
Carte electronică
372
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The Stieltjes derivative is a modification of the usual derivative through a nondecreasing and left-continuous map. This change in the definition allows us to study several differential problems under the same framework.This monograph is the first published book that offers a comprehensive view of the fundamentals of Stieltjes calculus and its applications, making it approachable to newcomers and experts. It aims to provide an integrated approach to the foundations and recent developments in the area of the Stieltjes derivatives and the qualitative theory of the Stieltjes differential equations. Through 10 pedagogically organized chapters, the authors examine a wide scope of the concept of the Stieltjes derivative and its applications. Each chapter focuses on theory, and proofs, and contains sufficient examples to enrich the reader's understanding.The Stieltjes derivative contains the Hilger delta derivative on time scales. Thus, offering a new unification and extension of continuous and discrete calculus. Further, a study of differential equations in the sense of the Stieltjes derivative allows the study of many classical problems in a unique framework. This theory has the advantage that ordinary differential equations, ordinary difference equations, quantum difference equations, impulsive differential equations, dynamic equations on time scales, and generalized differential equations can be treated as particular instances of the Stieltjes differential equations. Hence, this book serves as a basic reference for researchers to harness this powerful technique further to unlock new insights and embrace the intricacies of natural processes. Researchers and graduate students at various levels interested in learning about the Stieltjes differential calculus and related fields will find this text a valuable resource of both introductory and advanced material.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.