Stirling Numbers

· Selected Chapters Of Number Theory: Special Numbers الكتاب 3 · World Scientific
كتاب إلكتروني
468
صفحة
مؤهل
لم يتم التحقّق من التقييمات والمراجعات.  مزيد من المعلومات

معلومات عن هذا الكتاب الإلكتروني

Stirling numbers are one of the most known classes of special numbers in Mathematics, especially in Combinatorics and Algebra. They were introduced by Scottish mathematician James Stirling (1692-1770) in his most important work, Differential Method with a Tract on Summation and Interpolation of Infinite Series (1730). Stirling numbers have a rich history; many arithmetic, number-theoretical, analytical and combinatorial connections; numerous classical properties; as well as many modern applications.This book collects much of the scattered material on the two subclasses of Stirling numbers to provide a holistic overview of the topic. From the combinatorial point of view, Stirling numbers of the second kind, S(n, k), count the number of ways to partition a set of n different objects (i.e., a given n-set) into k non-empty subsets. Stirling numbers of the first kind, s(n, k), give the number of permutations of n elements with k disjoint cycles. Both subclasses of Stirling numbers play an important role in Algebra: they form the coefficients, connecting well-known sets of polynomials.This book is suitable for students and professionals, providing a broad perspective of the theory of this class of special numbers, and many generalisations and relatives of Stirling numbers, including Bell numbers and Lah numbers. Throughout the book, readers are provided exercises to test and cement their understanding.

تقييم هذا الكتاب الإلكتروني

أخبرنا ما هو رأيك.

معلومات القراءة

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك الاستماع إلى الكتب المسموعة التي تم شراؤها على Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.
أجهزة القراءة الإلكترونية والأجهزة الأخرى
للقراءة على أجهزة الحبر الإلكتروني، مثل أجهزة القارئ الإلكتروني Kobo، عليك تنزيل ملف ونقله إلى جهازك. يُرجى اتّباع التعليمات المفصّلة في مركز المساعدة لتتمكّن من نقل الملفات إلى أجهزة القارئ الإلكتروني المتوافقة.