Stochastic Processes

· Courier Dover Publications
Ebook
336
Pages
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.
Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine conditional probability and conditional expectation, normal processes and covariance stationary processes, and counting processes and Poisson processes. The text concludes with explorations of renewal counting processes, Markov chains, random walks, and birth and death processes, including examples of the wide variety of phenomena to which these stochastic processes may be applied. Numerous examples and exercises complement every section.

Quelques mots sur l'auteur

Emanuel Parzen is the author of several highly regarded books on probability theory. He taught at Stanford from 1956 until 1970 and then at SUNY Buffalo, and in 1978 he was named Distinguished Professor at Texas A&M University.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.