Stochastic and Integral Geometry

· Springer Science & Business Media
eBook
694
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry – random sets, point processes, random mosaics – and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes.

Tentang pengarang

Rolf Schneider: Born 1940, Studies of Mathematics and Physics in Frankfurt/M, Diploma 1964, PhD 1967 (Frankfurt), Habilitation 1969 (Bochum), 1970 Professor TU Berlin, 1974 Professor Univ. Freiburg, 2003 Dr. h.c. Univ. Salzburg, 2005 Emeritus

Wolfgang Weil: Born 1945, Studies of Mathematics and Physics in Frankfurt/M, Diploma 1968, PhD 1971 (Frankfurt), Habilitation 1976 (Freiburg), 1978 Akademischer Rat Univ. Freiburg, 1980 Professor Univ. Karlsruhe

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.