Stochastic and Integral Geometry

· Springer Science & Business Media
Е-книга
694
Страници
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry – random sets, point processes, random mosaics – and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes.

За авторот

Rolf Schneider: Born 1940, Studies of Mathematics and Physics in Frankfurt/M, Diploma 1964, PhD 1967 (Frankfurt), Habilitation 1969 (Bochum), 1970 Professor TU Berlin, 1974 Professor Univ. Freiburg, 2003 Dr. h.c. Univ. Salzburg, 2005 Emeritus

Wolfgang Weil: Born 1945, Studies of Mathematics and Physics in Frankfurt/M, Diploma 1968, PhD 1971 (Frankfurt), Habilitation 1976 (Freiburg), 1978 Akademischer Rat Univ. Freiburg, 1980 Professor Univ. Karlsruhe

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.