Sturm-Liouville Operators and Applications

· AMS Chelsea Publishing Series Kitabu cha 373 · American Mathematical Soc.
Kitabu pepe
393
Kurasa
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

The spectral theory of Sturm-Liouville operators is a classical domain of analysis, comprising a wide variety of problems. Besides the basic results on the structure of the spectrum and the eigenfunction expansion of regular and singular Sturm-Liouville problems, it is in this domain that one-dimensional quantum scattering theory, inverse spectral problems, and the surprising connections of the theory with nonlinear evolution equations first become related. The main goal of this book is to show what can be achieved with the aid of transformation operators in spectral theory as well as in their applications. The main methods and results in this area (many of which are credited to the author) are for the first time examined from a unified point of view. The direct and inverse problems of spectral analysis and the inverse scattering problem are solved with the help of the transformation operators in both self-adjoint and nonself-adjoint cases. The asymptotic formulae for spectral functions, trace formulae, and the exact relation (in both directions) between the smoothness of potential and the asymptotics of eigenvalues (or the lengths of gaps in the spectrum) are obtained. Also, the applications of transformation operators and their generalizations to soliton theory (i.e., solving nonlinear equations of Korteweg-de Vries type) are considered. The new Chapter 5 is devoted to the stability of the inverse problem solutions. The estimation of the accuracy with which the potential of the Sturm-Liouville operator can be restored from the scattering data or the spectral function, if they are only known on a finite interval of a spectral parameter (i.e., on a finite interval of energy), is obtained.

Kuhusu mwandishi

Vladimir A. Marchenko, Verkin Institute for Low Temperature Physics and Engineering, Kharkov, Ukraine

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.