Surface Impedance Boundary Conditions: A Comprehensive Approach

·
· CRC Press
电子书
412
符合条件
评分和评价未经验证  了解详情

关于此电子书

Surface Impedance Boundary Conditions is perhaps the first effort to formalize the concept of SIBC or to extend it to higher orders by providing a comprehensive, consistent, and thorough approach to the subject.
The product of nearly 12 years of research on surface impedance, this book takes the mystery out of the largely overlooked SIBC. It provides an understanding that will help practitioners select, use, and develop these efficient modeling tools for their own applications. Use of SIBC has often been viewed as an esoteric issue, and they have been applied in a very limited way, incorporated in computation as an ad hoc means of simplifying the treatment for specific problems.

Apply a Surface Impedance "Toolbox" to Develop SIBCs for Any Application

The book not only outlines the need for SIBC but also offers a simple, systematic method for constructing SIBC of any order based on a perturbation approach. The formulation of the SIBC within common numerical techniques—such as the boundary integral equations method, the finite element method, and the finite difference method—is discussed in detail and elucidated with specific examples.
Since SIBC are often shunned because their implementation usually requires extensive modification of existing software, the authors have mitigated this problem by developing SIBCs, which can be incorporated within existing software without system modification.

The authors also present:

  • Conditions of applicability, and errors to be expected from SIBC inclusion
  • Analysis of theoretical arguments and mathematical relationships
  • Well-known numerical techniques and formulations of SIBC
  • A practical set of guidelines for evaluating SIBC feasibility and maximum errors their use will produce

A careful mix of theory and practical aspects, this is an excellent tool to help anyone acquire a solid grasp of SIBC and maximize their implementation potential.

作者简介

Sergey Yuferev was born in St. Petersburg, Russia, in 1964. He received his MSc in computational fluid mechanics from St. Petersburg Technical University, St. Petersburg, in 1987, and his Ph.D. in computational electromagnetic from the A.F. Ioffe Institute, St. Petersburg, in 1992. From 1987 to 1998, he worked at with the Dense Plasma Dynamics Laboratory, A.F. Ioffe Institute. From 1999 to 2000, he was a visiting associate professor at the University of Akron, Akron, Ohio. Since 2000, he has been with the Nokia Corporation, Tampere, Finland. His current research interests include numerical and analytical methods of computational electromagnetics and their application to electromagnetic compatibility and electromagnetic interference problems of mobile phones.

Nathan Ida is currently a distinguished professor of electrical and computer engineering at the University of Akron, Akron, Ohio. He teaches electromagnetics, antenna theory, electromagnetic compatibility, sensing and actuation, and computational methods and algorithms. His current research interests include numerical modeling of electromagnetic fields, electromagnetic wave propagation, theoretical issues in computation, and nondestructive testing of materials at low and microwave frequencies as well as in communications, especially, in low-power remote control and wireless sensing. He has published extensively on electromagnetic field computation, parallel and vector algorithms and computation, nondestructive testing of materials, surface impedance boundary conditions, and other topics. He is the author of three books and co-author of a fourth. Dr. Ida is a fellow of the IEEE and the American Society of Nondestructive Testing.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。