Dec 2012 · Lecture Notes in Economics and Mathematical SystemsBook 173 · Springer Science & Business Media
Ebook
113
Pages
Sample
reportRatings and reviews aren’t verified Learn More
About this ebook
This book has grown out of a desire to explore the possibilities of using optimizing models in transportation planning. This approach has been followed throughout. Models which combine descriptive and optimizing elements are not treated. The gravity model is here studied as the solution to an optimizing model. In spite of this approach, much of the material shoula be of general interest. Algorithms are not discussed. The author has benefited from discussions with many colleagues. M. Florian suggested the term "interacti vi ty". N. F. Stewart and P. Smeds gave many valu able comments on a first draft. M. Beckmann made me think once more about the final chapters. R. Grubbstrem and K. Jornsten helped clarifYing some things in the same chapters. Remaining insufficiencies are due to the author. Gun Mannervik typed with great patience. Linkoping in October 1979 Sven Erlander ABSTRACT The book proposes extended use of optimizing models in transportation plann ing. An entropy constrained linear program for the trip distribution problem is formulated and shown to have the ordinarJ doubly constrained gravity model as its solution. Entropy is here used as a measure of interactivity, which is constrained to be at a prescribed level. In this way the variation present in the reference trip matrix is preserved. (The properties of entropy as a dispersion measure are shortly discussed. ) The detailed mathematics of the optimal solutions as well as of sensitivity and duality are given.
Series
Business & investing
Rate this ebook
Tell us what you think.
Reading information
Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.