Symmetry, Phase Modulation and Nonlinear Waves

· Cambridge Monographs on Applied and Computational Mathematics ຫົວທີ 31 · Cambridge University Press
ປຶ້ມອີບຸກ
240
ໜ້າ
ບໍ່ໄດ້ຢັ້ງຢືນການຈັດອັນດັບ ແລະ ຄຳຕິຊົມ ສຶກສາເພີ່ມເຕີມ

ກ່ຽວກັບປຶ້ມ e-book ນີ້

Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

ກ່ຽວກັບຜູ້ຂຽນ

Thomas J. Bridges is currently Professor of Mathematics at the University of Surrey. He has been researching the theory of nonlinear waves for over 25 years. He is co-editor of the volume Lectures on the Theory of Water Waves (Cambridge, 2016) and he has over 140 published papers on such diverse topics as multisymplectic structures, Hamiltonian dynamics, ocean wave energy harvesting, geometric numerical integration, stability of nonlinear waves, the geometry of the Hopf bundle, theory of water waves and phase modulation.

ໃຫ້ຄະແນນ e-book ນີ້

ບອກພວກເຮົາວ່າທ່ານຄິດແນວໃດ.

ອ່ານ​ຂໍ້​ມູນ​ຂ່າວ​ສານ

ສະມາດໂຟນ ແລະ ແທັບເລັດ
ຕິດຕັ້ງ ແອັບ Google Play Books ສຳລັບ Android ແລະ iPad/iPhone. ມັນຊິ້ງຂໍ້ມູນໂດຍອັດຕະໂນມັດກັບບັນຊີຂອງທ່ານ ແລະ ອະນຸຍາດໃຫ້ທ່ານອ່ານທາງອອນລາຍ ຫຼື ແບບອອບລາຍໄດ້ ບໍ່ວ່າທ່ານຈະຢູ່ໃສ.
ແລັບທັອບ ແລະ ຄອມພິວເຕີ
ທ່ານສາມາດຟັງປຶ້ມສຽງທີ່ຊື້ໃນ Google Play ໂດຍໃຊ້ໂປຣແກຣມທ່ອງເວັບຂອງຄອມພິວເຕີຂອງທ່ານໄດ້.
eReaders ແລະອຸປະກອນອື່ນໆ
ເພື່ອອ່ານໃນອຸປະກອນ e-ink ເຊັ່ນ: Kobo eReader, ທ່ານຈຳເປັນຕ້ອງດາວໂຫຼດໄຟລ໌ ແລະ ໂອນຍ້າຍມັນໄປໃສ່ອຸປະກອນຂອງທ່ານກ່ອນ. ປະຕິບັດຕາມຄຳແນະນຳລະອຽດຂອງ ສູນຊ່ວຍເຫຼືອ ເພື່ອໂອນຍ້າຍໄຟລ໌ໄໃສ່ eReader ທີ່ຮອງຮັບ.