Symmetry, Phase Modulation and Nonlinear Waves

· Cambridge Monographs on Applied and Computational Mathematics Cartea 31 · Cambridge University Press
Carte electronică
240
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

Despre autor

Thomas J. Bridges is currently Professor of Mathematics at the University of Surrey. He has been researching the theory of nonlinear waves for over 25 years. He is co-editor of the volume Lectures on the Theory of Water Waves (Cambridge, 2016) and he has over 140 published papers on such diverse topics as multisymplectic structures, Hamiltonian dynamics, ocean wave energy harvesting, geometric numerical integration, stability of nonlinear waves, the geometry of the Hopf bundle, theory of water waves and phase modulation.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.