Synthetic Differential Topology

· ·
· London Mathematical Society Lecture Note Series کتاب 448 · Cambridge University Press
ای بک
234
صفحات
درجہ بندیوں اور جائزوں کی تصدیق نہیں کی جاتی ہے  مزید جانیں

اس ای بک کے بارے میں

This book formally introduces synthetic differential topology, a natural extension of the theory of synthetic differential geometry which captures classical concepts of differential geometry and topology by means of the rich categorical structure of a necessarily non-Boolean topos and of the systematic use of logical infinitesimal objects in it. Beginning with an introduction to those parts of topos theory and synthetic differential geometry necessary for the remainder, this clear and comprehensive text covers the general theory of synthetic differential topology and several applications of it to classical mathematics, including the calculus of variations, Mather's theorem, and Morse theory on the classification of singularities. The book represents the state of the art in synthetic differential topology and will be of interest to researchers in topos theory and to mathematicians interested in the categorical foundations of differential geometry and topology.

مصنف کے بارے میں

Marta Bunge is Professor Emerita of Mathematics at McGill University, Montreal. She is the author (with Professor Jonathon Funk) of the book Singular Coverings of Toposes (2010). Bunge is also a member of the editorial boards of the Cahiers de Topologie et Geometrie Differentielle Categoriques and of the Tbilisi Mathematical Journal.

Felipe Gago is Professor of Mathematics at the University of Santiago de Compostela, Spain.

Ana María San Luis is Professor of Mathematics at the University of Oviedo, Spain.

اس ای بک کی درجہ بندی کریں

ہمیں اپنی رائے سے نوازیں۔

پڑھنے کی معلومات

اسمارٹ فونز اور ٹیب لیٹس
Android اور iPad/iPhone.کیلئے Google Play کتابیں ایپ انسٹال کریں۔ یہ خودکار طور پر آپ کے اکاؤنٹ سے سینک ہو جاتی ہے اور آپ جہاں کہیں بھی ہوں آپ کو آن لائن یا آف لائن پڑھنے دیتی ہے۔
لیپ ٹاپس اور کمپیوٹرز
آپ اپنے کمپیوٹر کے ویب براؤزر کا استعمال کر کے Google Play پر خریدی گئی آڈیو بکس سن سکتے ہیں۔
ای ریڈرز اور دیگر آلات
Kobo ای ریڈرز جیسے ای-انک آلات پر پڑھنے کے لیے، آپ کو ایک فائل ڈاؤن لوڈ کرنے اور اسے اپنے آلے پر منتقل کرنے کی ضرورت ہوگی۔ فائلز تعاون یافتہ ای ریڈرز کو منتقل کرنے کے لیے تفصیلی ہیلپ سینٹر کی ہدایات کی پیروی کریں۔