Text Mining: Fundamentals and Applications

· Artificial Intelligence Livro 222 · One Billion Knowledgeable
E-book
103
Páginas
Qualificado
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

What Is Text Mining

Text mining, also known as text data mining (TDM) or text analytics, is the technique of extracting useful information from text. Related terms include text data mining (TDM) and text analytics. It is "the discovery by computer of new, previously unknown information by automatically extracting information from various written resources," according to one definition of the term. Websites, books, emails, reviews, and articles are all examples of written materials that may be utilized. Typically, the best way to acquire high-quality information is to construct patterns and trends through the use of methods such as statistical pattern learning. According to Hotho et al. (2005), we are able to differentiate between three distinct perspectives of text mining. These perspectives are information extraction, data mining, and a process known as knowledge discovery in databases (KDD). Text mining often entails the process of structuring the text that is input, determining patterns within the data that has been structured, and then lastly evaluating and interpreting the result of the mining process. When discussing text mining, the term "high quality" typically relates to some combination of the concepts of relevance, novelty, and interest. Text categorization, text clustering, concept/entity extraction, generation of granular taxonomies, sentiment analysis, document summarizing, and entity relation modeling are all examples of typical text mining activities.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Text Mining


Chapter 2: Natural Language Processing


Chapter 3: Data Mining


Chapter 4: Information Extraction


Chapter 5: Semantic Similarity


Chapter 6: Unstructured Data


Chapter 7: Biomedical Text Mining


Chapter 8: Sentiment Analysis


Chapter 9: Word Embedding


Chapter 10: Social Media Mining


(II) Answering the public top questions about text mining.


(III) Real world examples for the usage of text mining in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of text mining' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of text mining.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.

Continue a série

Mais de Fouad Sabry

E-books semelhantes