The Conway–Maxwell–Poisson Distribution

· Institute of Mathematical Statistics Monographs Bok 8 · Cambridge University Press
E-bok
330
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

While the Poisson distribution is a classical statistical model for count data, the distributional model hinges on the constraining property that its mean equal its variance. This text instead introduces the Conway-Maxwell-Poisson distribution and motivates its use in developing flexible statistical methods based on its distributional form. This two-parameter model not only contains the Poisson distribution as a special case but, in its ability to account for data over- or under-dispersion, encompasses both the geometric and Bernoulli distributions. The resulting statistical methods serve in a multitude of ways, from an exploratory data analysis tool, to a flexible modeling impetus for varied statistical methods involving count data. The first comprehensive reference on the subject, this text contains numerous illustrative examples demonstrating R code and output. It is essential reading for academics in statistics and data science, as well as quantitative researchers and data analysts in economics, biostatistics and other applied disciplines.

Om forfatteren

Kimberly F. Sellers is Professor in the Department of Mathematics and Statistics at Georgetown University, and a Principal Researcher with the Center for Statistical Research and Methodology at the US Census Bureau in Washington, DC. She is a Fellow of the American Statistical Association and an Elected Member of the International Statistical Institute.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.