The Geometry of Complex Domains

· Progress in Mathematics Buch 291 · Springer Science & Business Media
3,0
1 Rezension
E-Book
303
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

This highly original work, written by the creators of the multivariable theory of automorphisms, is a rich tapestry of themes and concepts, and a comprehensive treatment of an important area of mathematics. From Poincaré's work on biholomorphic inequivalence in 1906, it became clear that the structures of the automorphism groups of domains in multi-dimensional complex space are more complex, and more interesting, than those in the complex plane. The authors build on this theme and trace the evolution of the classical theory to the modern theory, which is today a cornerstone of geometric analysis.

The text begins with an introductory chapter on the concept of an automorphism group in which the theory in one complex variable is presented, emphasizing the classical ideas of Schwarz, Jobe, and others. Also examined is the theory of planar domains of multiple but finite connectivity, principally develped by Heins in the 1940s and 1950s. The authors treatment progresses to the theory in several complex variables with the so-called "classical domains" of E. Cartan, the Siegel domains of type I, II, and III, and the more modern theory of automorphism groups of smoothly bounded domains.

Bewertungen und Rezensionen

3,0
1 Rezension

Autoren-Profil

Steven G. Krantz received the B.A. degree from the University of California at Santa Cruz and the Ph.D. from Princeton University. He has taught at UCLA, Princeton, Penn State, and Washington University, where he has most recently served as Chair of the Mathematics Department.

Krantz has directed 18 Ph.D. Students and 9 Masters students, and is winner of the Chauvenet Prize and the Beckenbach Book Award. He edits six journals and is Editor-in-Chief of three.

A prolific scholar, Krantz has published more than 55 books and more than 160 academic papers.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.