The Geometry of Dynamical Triangulations

· ·
· Lecture Notes in Physics Monographs Bok 50 · Springer Science & Business Media
E-bok
197
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

The express purpose of these lecture notes is to go through some aspects of the simplicial quantum gravity model known as the dynamical triangula tions approach. Emphasis has been on laying the foundations of the theory and on illustrating its subtle and often unexplored connections with many distinct mathematical fields ranging from global Riemannian geometry, to moduli theory, number theory, and topology. Our exposition will concentrate on these points so that graduate students may find in these notes a useful exposition of some of the rigorous results one can -establish in this field and hopefully a source of inspiration for new exciting problems. We try as far as currently possible to expose the interplay between the analytical aspects of dynamical triangulations and the results of Monte Carlo simulations. The techniques described here are rather novel and allow us to address points of current interest in the subject of simplicial quantum gravity while requiring very little in the way of fancy field-theoretical arguments. As a consequence, these notes contain mostly original and until now unpublished material, which will hopefully be of interest both to the expert practitioner and to graduate students entering the field. Among the topics addressed here in considerable detail are the following. (i) An analytical discussion of the geometry of dynamical triangulations in dimensions n == 3 and n == 4.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.