The Resolution Calculus

· Springer Science & Business Media
ebook
300
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

The History of the Book In August 1992 the author had the opportunity to give a course on resolution theorem proving at the Summer School for Logic, Language, and Information in Essex. The challenge of this course (a total of five two-hour lectures) con sisted in the selection of the topics to be presented. Clearly the first selection has already been made by calling the course "resolution theorem proving" instead of "automated deduction" . In the latter discipline a remarkable body of knowledge has been created during the last 35 years, which hardly can be presented exhaustively, deeply and uniformly at the same time. In this situ ation one has to make a choice between a survey and a detailed presentation with a more limited scope. The author decided for the second alternative, but does not suggest that the other is less valuable. Today resolution is only one among several calculi in computational logic and automated reasoning. How ever, this does not imply that resolution is no longer up to date or its potential exhausted. Indeed the loss of the "monopoly" is compensated by new appli cations and new points of view. It was the purpose of the course mentioned above to present such new developments of resolution theory. Thus besides the traditional topics of completeness of refinements and redundancy, aspects of termination (resolution decision procedures) and of complexity are treated on an equal basis.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.