Theorie der Limitierungsverfahren

· Springer-Verlag
eBook
242
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Herrn Professor F. K. SCHMIDT und dem Verlag danke ich, daß sie dieses Buch anregten und in die Sammlung "Ergebnisse der Mathematik" aufnahmen, obwohl es sich von andern Bänden der Sammlung stark unterscheidet. Die Limitierungstheorie ist nämlich so weit verzweigt, die Literatur so umfangreich, daß es mir nicht möglich war, eine abge schlossene Darstellung zu geben. Der Bericht verfolgt den bescheideneren Zweck, den Leser an die Literatur heranzuführen und ihm eigene Arbeiten zu erleichtern. In erster Linie betrachte ich Matrixtransformationen gewöhnlicher Zahlenfolgen und die zugehörigen Limitierungsverfahren. Allgemeine Aussagen werden betont, spezielle Verfahren verhältnismäßig kurz be handelt; der Aufbau des Buches ist wesentlich bestimmt durch die grund legenden funktionalanalytischen Untersuchungen von S. MAZUR und W.ORLICZ. Auf die Anwendungen der Limitierung konnte ich nur am Rande eingehen. Es bedeutete einen unschätzbaren Vorteil, daß ich in den hiesigen Bibliotheken fast alle benötigten Zeitschriften zur Verfügung hatte. Herr Professor J. E. HOFMANN half bei der Abfassung des Abschnittes über Geschichte der Limitierung. Herr Professor W. MEYER-KöNIG und Herr Dozent D. GAIER gaben mir zahlreiche wertvolle Ratschläge. Vor allem aber gilt mein Dank meinen verehrten Lehrern, deren Einfluß überall in diesem Buche hervortritt: K. KNOPP t und G. LORENTZ. Tübingen, im Herbst 1956 Karl Zeller Inhaltsverzeichnis Seite Einleitung . . . . . . . 1 Erstes Kapitel Grundbegriffe der Limitierung 1. Zusammenfassung. . . . . . . . 2 2. Geschichte der Limitierungstheorie 2 3. Allgemeine Limitierungstheorie . 3 4. Matrixverfahren 6 5. Hauptprobleme . . . . .

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.