Thermodynamical Formalism and Multifractal Analysis for Meromorphic Functions of Finite Order

·
· American Mathematical Soc.
كتاب إلكتروني
107
صفحة
لم يتم التحقّق من التقييمات والمراجعات.  مزيد من المعلومات

معلومات عن هذا الكتاب الإلكتروني

The thermodynamical formalism has been developed by the authors for a very general class of transcendental meromorphic functions. A function f:C→C of this class is called dynamically (semi-) regular. The key point in our earlier paper (2008) was that one worked with a well chosen Riemannian metric space (C ,σ) and that the Nevanlinna theory was employed. In the present manuscript we first improve upon our earlier paper in providing a systematic account of the thermodynamical formalism for such a meromorphic function f f and all potentials that are Hölder perturbations of −tlog⁡|f′|σ. In this general setting, we prove the variational principle, we show the existence and uniqueness of Gibbs states (with the definition appropriately adapted for the transcendental case) and equilibrium states of such potentials, and we demonstrate that they coincide. There is also given a detailed description of spectral and asymptotic properties (spectral gap, Ionescu-Tulcea and Marinescu Inequality) of Perron-Frobenius operators, and their stochastic consequences such as the Central Limit Theorem, K-mixing, and exponential decay of correlations. Then we provide various, mainly geometric, applications of this theory. Indeed, we examine the finer fractal structure of the radial (in fact non-escaping) Julia set by developing the multifractal analysis of Gibbs states. In particular, the Bowen's formula for the Hausdorff dimension of the radial Julia set from our earlier paper is reproved. Moreover, the multifractal spectrum function is proved to be convex, real-analytic and to be the Legendre transform conjugate to the temperature function.

تقييم هذا الكتاب الإلكتروني

أخبرنا ما هو رأيك.

معلومات القراءة

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك الاستماع إلى الكتب المسموعة التي تم شراؤها على Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.
أجهزة القراءة الإلكترونية والأجهزة الأخرى
للقراءة على أجهزة الحبر الإلكتروني، مثل أجهزة القارئ الإلكتروني Kobo، عليك تنزيل ملف ونقله إلى جهازك. يُرجى اتّباع التعليمات المفصّلة في مركز المساعدة لتتمكّن من نقل الملفات إلى أجهزة القارئ الإلكتروني المتوافقة.