Thermodynamical Formalism and Multifractal Analysis for Meromorphic Functions of Finite Order

·
· American Mathematical Soc.
E-book
107
Mga Page
Hindi na-verify ang mga rating at review  Matuto Pa

Tungkol sa ebook na ito

The thermodynamical formalism has been developed by the authors for a very general class of transcendental meromorphic functions. A function f:C→C of this class is called dynamically (semi-) regular. The key point in our earlier paper (2008) was that one worked with a well chosen Riemannian metric space (C ,σ) and that the Nevanlinna theory was employed. In the present manuscript we first improve upon our earlier paper in providing a systematic account of the thermodynamical formalism for such a meromorphic function f f and all potentials that are Hölder perturbations of −tlog⁡|f′|σ. In this general setting, we prove the variational principle, we show the existence and uniqueness of Gibbs states (with the definition appropriately adapted for the transcendental case) and equilibrium states of such potentials, and we demonstrate that they coincide. There is also given a detailed description of spectral and asymptotic properties (spectral gap, Ionescu-Tulcea and Marinescu Inequality) of Perron-Frobenius operators, and their stochastic consequences such as the Central Limit Theorem, K-mixing, and exponential decay of correlations. Then we provide various, mainly geometric, applications of this theory. Indeed, we examine the finer fractal structure of the radial (in fact non-escaping) Julia set by developing the multifractal analysis of Gibbs states. In particular, the Bowen's formula for the Hausdorff dimension of the radial Julia set from our earlier paper is reproved. Moreover, the multifractal spectrum function is proved to be convex, real-analytic and to be the Legendre transform conjugate to the temperature function.

I-rate ang e-book na ito

Ipalaam sa amin ang iyong opinyon.

Impormasyon sa pagbabasa

Mga smartphone at tablet
I-install ang Google Play Books app para sa Android at iPad/iPhone. Awtomatiko itong nagsi-sync sa account mo at nagbibigay-daan sa iyong magbasa online o offline nasaan ka man.
Mga laptop at computer
Maaari kang makinig sa mga audiobook na binili sa Google Play gamit ang web browser ng iyong computer.
Mga eReader at iba pang mga device
Para magbasa tungkol sa mga e-ink device gaya ng mga Kobo eReader, kakailanganin mong mag-download ng file at ilipat ito sa iyong device. Sundin ang mga detalyadong tagubilin sa Help Center para mailipat ang mga file sa mga sinusuportahang eReader.