Thermodynamical Formalism and Multifractal Analysis for Meromorphic Functions of Finite Order

·
· American Mathematical Soc.
E-book
107
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

The thermodynamical formalism has been developed by the authors for a very general class of transcendental meromorphic functions. A function f:C→C of this class is called dynamically (semi-) regular. The key point in our earlier paper (2008) was that one worked with a well chosen Riemannian metric space (C ,σ) and that the Nevanlinna theory was employed. In the present manuscript we first improve upon our earlier paper in providing a systematic account of the thermodynamical formalism for such a meromorphic function f f and all potentials that are Hölder perturbations of −tlog⁡|f′|σ. In this general setting, we prove the variational principle, we show the existence and uniqueness of Gibbs states (with the definition appropriately adapted for the transcendental case) and equilibrium states of such potentials, and we demonstrate that they coincide. There is also given a detailed description of spectral and asymptotic properties (spectral gap, Ionescu-Tulcea and Marinescu Inequality) of Perron-Frobenius operators, and their stochastic consequences such as the Central Limit Theorem, K-mixing, and exponential decay of correlations. Then we provide various, mainly geometric, applications of this theory. Indeed, we examine the finer fractal structure of the radial (in fact non-escaping) Julia set by developing the multifractal analysis of Gibbs states. In particular, the Bowen's formula for the Hausdorff dimension of the radial Julia set from our earlier paper is reproved. Moreover, the multifractal spectrum function is proved to be convex, real-analytic and to be the Legendre transform conjugate to the temperature function.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.