Thermodynamical Formalism and Multifractal Analysis for Meromorphic Functions of Finite Order

·
· American Mathematical Soc.
E-grāmata
107
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

The thermodynamical formalism has been developed by the authors for a very general class of transcendental meromorphic functions. A function f:C→C of this class is called dynamically (semi-) regular. The key point in our earlier paper (2008) was that one worked with a well chosen Riemannian metric space (C ,σ) and that the Nevanlinna theory was employed. In the present manuscript we first improve upon our earlier paper in providing a systematic account of the thermodynamical formalism for such a meromorphic function f f and all potentials that are Hölder perturbations of −tlog⁡|f′|σ. In this general setting, we prove the variational principle, we show the existence and uniqueness of Gibbs states (with the definition appropriately adapted for the transcendental case) and equilibrium states of such potentials, and we demonstrate that they coincide. There is also given a detailed description of spectral and asymptotic properties (spectral gap, Ionescu-Tulcea and Marinescu Inequality) of Perron-Frobenius operators, and their stochastic consequences such as the Central Limit Theorem, K-mixing, and exponential decay of correlations. Then we provide various, mainly geometric, applications of this theory. Indeed, we examine the finer fractal structure of the radial (in fact non-escaping) Julia set by developing the multifractal analysis of Gibbs states. In particular, the Bowen's formula for the Hausdorff dimension of the radial Julia set from our earlier paper is reproved. Moreover, the multifractal spectrum function is proved to be convex, real-analytic and to be the Legendre transform conjugate to the temperature function.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.