Symmetry, Phase Modulation and Nonlinear Waves

· Cambridge Monographs on Applied and Computational Mathematics Book 31 · Cambridge University Press
Ebook
240
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

About the author

Thomas J. Bridges is currently Professor of Mathematics at the University of Surrey. He has been researching the theory of nonlinear waves for over 25 years. He is co-editor of the volume Lectures on the Theory of Water Waves (Cambridge, 2016) and he has over 140 published papers on such diverse topics as multisymplectic structures, Hamiltonian dynamics, ocean wave energy harvesting, geometric numerical integration, stability of nonlinear waves, the geometry of the Hopf bundle, theory of water waves and phase modulation.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.